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Stokes drag on a disk sedimenting edgewise toward a plane wall
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Abstract. For comparison with the results of current experiments, a concise analytical method is developed to
describe the non-axisymmetric flow generated by the edgewise sedimentation of a disk toward a plane wall. Since all
Fourier modes contribute to the flow, the use of Abel transforms in earlier work must be suitably extended in order
to again obtain integral equations of the second kind. By expanding the wall effects in powers of D ', where D is
the distance from the disk axis to the wall, the dimensionless drag coefficient is found to order D-5 without having
to solve the flow problem beyond the second Fourier mode.

1. Introduction

An inevitable consequence of the slow rate of decay of creeping flow disturbances is that
experimental results must invariably be modified by correction factors that take account of
necessary, relatively distant boundaries in the laboratory. Thus, in measuring the drag on a
disk moving edgewise between parallel walls, allowance must be made for the remaining
container walls as must be similarly done when measuring the drag on a disk moving
sideways towards a plane wall. This latter situation has potential engineering applications
and is currently the subject of experimental work by Trahan and Hussey [1]. Here the effect
of the wall is to increase from one to infinity the number of Fourier modes, with respect to
the axis of the disk, that can contribute to the flow. Thus it is of interest to investigate
whether the analytical methods, involving Abel transforms and integral equations, can be
suitably extended from earlier work.

Attempts to establish a solvable, infinite set of dual integral equations, by using the
velocity representation given by Ranger [2], as for the disk in isolation [3], or the shear flow
past a hole in a plane [4, 5] were unsuccessful so a more basic procedure is adopted here.
After expressing the velocity field as that due to a distribution of tangentially directed
stokeslets, modified by the presence of the wall, over the disk, a pair of two-dimensional
integral equations of the first kind for the unknown density functions is obtained. Then the
structure of the double Fourier expansion of the singular terms in the kernels suggests the
introduction of Abel transforms, as in [6], after which a procedure equivalent to inverting an
Abel integral equation yields an infinite system of integral equations of the second kind. By
this stage, the terms involving the reflected velocities, have become more complicated and
no longer available in closed form. This major difficulty is conveniently overcome by seeking
a solution in inverse powers of D, the distance between the disk axis and the wall. The
separable structure of the kernels then identifies the Abel transforms of the density
components to be even or odd polynomials of increasing order in D-', after which the
solution is elementary. The dimensionless drag coefficient is evaluated to order D - 5 in
equation (25) without having to solve the integral equations beyond the second Fourier
mode. This latter contributes at order D 3 whereas the first mode does so at order D-4 . The
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presentation below is designed to emphasize the structure of the solution involving all
Fourier modes. An earlier decision to expand in powers of D - , together with some
hindsight, would likely reduce the algebra by allowing some reordering of the steps.

2. Formulation of the disk problem

A thin rigid disk of unit radius translates steadily edgewise toward a rigid wall in
incompressible viscous fluid that is at rest at infinity. Cylindrical polar coordinates (p, 0, z)
are chosen so that the disk is instantaneously at z = 0 (0 - p - 1, - r < 0 - rT) and moving
with velocity U toward a rigid plane at x = D, where (x, y) = p(cos 0, sin 0) and , , i
denote unit vectors. The Reynolds number is assumed to be sufficiently small for the velocity
field v to satisfy the creeping flow equations:

IZV2v = Vp, (1)

V. v =0, (2)

where /i is the coefficient of viscosity and p the dynamic pressure. The boundary conditions
on the disk are

V = U, vy =0= v on z =0 (O <p1), (3)

while no-slip at the plane requires

vu = O= = v z on x = D . (4)

The only symmetries in the flow are with respect to the planes y = 0 and z = 0. Symmetry
with respect to the plane of the disk implies that the flow can be represented as that due to
distributions, over the disk, of tangentially directed stokeslets, modified to take account of
the wall conditions (4). Symmetry with respect to the plane y = 0 implies that the dis-
tribution densities for stokeslets in the and directions are respectively even and odd
functions of y, i.e. the polar angle. Hence, the velocity field v, satisfying (1), (2) and (4) and
such that v = 0 at z = 0, can be written in the form

= x1' f( .){[ o+ (x C )2 ] + (X -a Cos )
=If foI r r3r

x [(y - a sin ) + z] - V -Vy - Vza da do

1 og(o, )) sin +)]+ (y - sin q)

x [(x - a cos + z] - - - Uz ao da d , (5)

where r2 = (x - a cos k)2 + (y - a sin 0)
2 + 2, f and g are respectively even and odd

functions of a and the reflected velocity fields V and U are given, from [7], in terms of image
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stokeslets, stokes-doublets and source-doublets by

2 4
Vx = 2 + 4 (D - x)(D - a cos 6)

(y -a sin 2)2+ z2 1 6 
R LR + R (D-x )(O - cos w),

(V V)= (y - asin 6, z) 6

UX =Y R 3 4' [x - at cos + i (D - x)(D - cos x)(2D - x - a cos )] ,

U,,_y - a sin 
WUY, U = (11 ) I R +(D - x)(D - a cos )I + (y - a sin , z) R3

x [1- R2 (D - x)(D -a cos 6)] (6)

and

R 2 = (2D-x - a cos) 2 +(y - a sin) 2 +z 2 . (7)

For each orientation of the stokeslet, the axisymmetric geometry allows the above flow
fields to be determined by Hankel transforms. When the disk conditions (3) are applied to v,
the resulting pair of integral equations is

xr 1 -- (D x- a cos ()2

(y - a sin )(x - a cos ) -
3 U

+ g(a, r d d [
1 (y - a sin0)2>

+ -3 , uy

Transformation of the integral equation

Evidently it is necessary to consider Fourier components of (8). The density functions have
expansions

f(a, 6) mfm(a) COS mb, g(a, ) 2 gm(a) sin m4 (9)
m=O m=l

(E = 1 Em = 2 if m 1) while the kernel functions arising directly from the stokeslets, i.e.
those exhibiting singularities, can be written
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Fig. 1. The geometrical configuration.

( COS COS 
1 P sn asin sin

+
[P2 + a2 _ 2pa cos(o - 4) + z 2]11 2 [p 2 + a2 _ 2pa cos(o - 4) + z13/2

(3 + z ) [ p 2 + a2 - 2pa cos(0 - ) + z2] -1 / 2

(p2 Cos 20 + a2 cos 2)) - pa cos(0 + t))

[P2 + a 2 - 2pa cos(0 - ) + z2]3/2

(p cos 0 - a cos ,)(p sin - a sin ) (p2 sin 20 + a 2 sin 2() - pa sin( +))

[p 2 + a 2 - 2p cos( + 2]3/ 2
[p

2 + 2 -_ 2pa cos(O - ) + z2] 3/ 2

where

[ 2 + a2 -_ 2pa cos(0 - a) + Z2 ]- 1 /2 = X Em COS m(O -0) e-klzlJ.(kp)Jm(ka) dk
m=0

and, by use of this expansion involving Bessel functions,

2 cos 2 COS
2 C 2+2 co 2 - 2pa cos ( + )

sin 2 +a sin sin + 1 a k 

[p2 + a2 _ 2pa cos( - ) + 
2]3 /2 z e dk m= 2

[p Jm(kp)Jm(ka) + am+ 2 (kp)Jm+ 2(ka) - 2paJm+(kp)Jr,+l(ka)] sin [( +2)0 - m]

-[p Jm(kp)Jm(ka) + a Jm22(p)J_ 2(ka) - 2paJm_l(kp)Jm_l(ka)] iO [(m- 2)0-m
But the k-integrals can be re-arranged, by integration by parts and use of the recurrence

But the k-integrals can be re-arranged, by integration by parts and use of the recurrence

-- > X
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relations, to yield

I e-klzl[p 2Jm(kp)Jm(ka) + a 2 Jm+2(kp)Jm+2(k) - 2paJm+l(kP)Jm+,,(ka)] dk

= oe-klIlJm+2(kp)Jm(ka)[)[lz 2 +3 k + k+2 dk.

Then, since

- 1 a [ z12 + 3 +3 + e-k lzl = (1 + kzi) e- k lzl

the above formulae enable the integral equations (8), after substitution of (9), to be
rearranged in the form

Z o fEn (a)[ ] cos nO Jn(ka)Jn(kp) dk

2 0 Jn(ka)[n+2(kP) sin (n +2)8 Jn-2(kp) (n - 2)0] dkja dasin (.)[:sin 8~.(i)I(Msin J

+ 2 1 gn(a) {[ sin no Jn (ka) Jn (kp) dk

os (n + 2)0 J- 2(kP) sin - 2)0] dkla da

u+ x 2g.(a) sin mb} a dc do (0p 2 1, --r< r) .

In previous work [6, 8, 9], integral equations of the second kind were obtained by using
Abel transforms. Here the procedure needs to be applied to all Fourier modes by exploiting
the identity [10]

J,(ka)J,(kp) dnk = 2 ap) fmin(a(p) n2n ds
T (0 a2 _ s2)1 /2(p2

-
2) 1 12 (n 0)

to define

2 fm (/) COm (1ada)
[Fn(s), G(s)] = [(a) g()] (a 2 s 2)1

/
2 (n , (11)

i.e.

[f(o) gn() = (Y)n-l d J 1 [F(s), Gn(s)] s ds (12)=. (() g ()]a (2 - a2)1/2 (// - 0 )
, (12)
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Then

f [f,(a), gn(a)]J(ka)a da = [Fn(S), G.(s)]hn (ks) ds (n - 0) (13)

where

h,(ks) = 2f 2)1/2J(k da =(2 )J+,(ks) (n - -1). (14)(S. _ 1/2

In particular

h_l(ks)= cos ks, ho(ks)= sin ks.

The left hand sides of the integral equations (10) can now be expressed as

1o Fo(s)f h l(ks){[]Jo(kp)+ J2(kp) i 20}dkds

+ 6 [ Fn(s) cos n] h- 1 (ks)J(kp) dk ds
n= JL Gn(s) sin nO 0

+ o hn-(ks) [F(s) - G(s)G]Jn+2(k) os (n + 2)

cos - 2)0 dk ds
[Fn(s) + Gn(s)lJn_2(kp) si (n 2)IJ dk ds

while on the right hand side, substitution of (12) yields

0 =Vf ayadax d J afo [ ]ofo(-)ad= [;] ds+oFo (s)d a z=o (F2O(32)1[2

o[V]·(m a)a da o=j S a /m VyJz=o (s
2

_ 
2 )1 12 ds (m > 1), (15)

U [ ]gm()/da=f sm-a o a [mSyz=O (s
2 _ - 2 )

1/2 ds (m 1).

Note that the regularity of the density functions implies, in (9), that f,, g are (an) as
a --> 0, thus ensuring convergence of the integrals in (11), whence F, Gn are Q(s') as s - 0.

It is now necessary to consider Fourier components of (10) in order to exploit the
identities

d pn+lj(kp) = t
d J -P 2 )1 2 dp = th 1(kt) (n > 0) , (16)

dtJo(2_ - ~ d pth~_(kt

derived from (14), and
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2 - h- (ks)hn-(kt) dk = (s - t) (n 0)

2 tn
- h+l(ks)hn(kt) dk = (2n + 1) n'+J- H(s-t) - (s-t) (n 0) (17)

7T s

obtained by substitution of (14) and suitable manipulation of the identity

o J.(ks)Jv-(kt) dk = v H(s - t)

given by [11, section 6.512]. Here (x) and H(x) denote the Dirac delta and Heaviside unit
functions respectively. Hence, by applying, for each n 0, the operator

1d ~ (t dp 

rrt n dt |0 (W p2 )1 /2

to the nth Fourier components of the pair of integral equations of the first kind (10), the
successive use of (13), (15), (16) and (17) yields an infinite set of integral equations of the
second kind, namely

3F0(t) + f1 F2 (s) + G2 (s) ds - [F2(t) + G2 (t)] = 2 + a0(t),

2[FI(t) + Gl(t)] = al(t) + bl(t),

3[F2 (t) + G2(t)] - F(t) + t f Fo(s) ds = a2 (t) + b2(t)

3[F(t) + Gn(t)] - [F- 2(t) n-2 (t)] + 2n n 2[F - G-2(s)] ds

= an(t) + b(t ) (n 3),

3[F.(t) - Gn(t)] - [Fn+2(t) + Gn+(t)] + (2n + 1)t" J Fn+2 + 2 ds

= a(t ) - bn(t ) (n 1) (O < t - 1), (18)

where

aos(t)(n )l 1 ca ( pn+l dp Vxl
Lbn(t)(n >1)J =2 J - sin n dO t- J (t2 _ P2)1/2 [2[Vy o 0o(s) ds

+--f1 f= Sof1 da x]
2 +2 [ V (=o + 2 (S) cos mO

+ Gm()[ uz=o sin m)}]] sds d (0 t 1). (19)

This is as far as the calculation can proceed without addressing the principal difficulty,
namely, the evaluation of the double Fourier expansion of the reflected velocity fields at the
disk.
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In the absence of the plane (D - c), the only non-zero inhomogenous term in (18) is 2 in
the first equation and the system evidently has the solution

Fo(t ) = 3 F, (t) = = G(t) (n > 1) ( t 1) (20)

But, from (5), the force F*1 exerted by the disk on the fluid is given by

F*8/;i UO f f(a, O)a da do

= 16U0Oo f o(a)a da

= 16U0o i FO(s) ds,

after invoking (9) and (12). Thus, for unbounded fluid, the standard result F} = 32UOI/3
(see e.g. [2] or [3]) is recovered and hence the dimensionless drag coefficient FD should be
defined by

3FD 3
F = 3 2 U 2 J F(s) ds. (21)

4. Determination of the force coefficient to order D-5

The functions defined by (19) are evidently of the form

an(t) = (S)Kon(, t) + [Fm(S)Kmn( t) + Gm(S)Lmn(S t)]ds, (n O0)

(22)
bn(t) = [Fm(s)Kmn(S, t) + Gm(S)Lmn(S, t)] ds (n 3 1),

and largely determine the kernel functions in the system (18). Since these cannot be
determined from (6) is closed form, some combination of analytical and numerical approxi-
mation is required. A suitable choice is the expansion of the reflected velocities in powers of
D-1 for this yields simple, separable kernels and automatically truncates the infinite system.

If only the terms D, D in Vx, Uy respectively are retained, then the only contribution to
(19) is a term (4/1rD)FD to a,(t) and Brenner's result [12]

is recovered.
The expansion of Vx, U is facilitated by observing, from (7), that

2 4 3 r2
R + (D - x)(D - a cos t R R 3

and the algebra soon demonstrates that, for n > 1, F,(s) and G,(s) are of order D-("+1)
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Thus, for a solution up to order D-5, only the kernels with m = 0 or 1 in (22) can enter the
calculation. It is found, after lengthy manipulation, that

Ta 6 6 3t2 41t4 ) Fo(s) ds-( 75t2 fo1 s2F(s) ds
D 2D3 64D5/o 2 3 32D)5 

-64D5 s4 ) dS Fo,(s) - G(s)l] ds,

(3t 5t foI 3t
ra (ts) ds - 4 11 s2Fo(s) ds

+ F f s[2F,(s) - G,(s)] ds,

Trb,(t) = D3 s[F(s)-8 Gl(s)]ds

'ra2(t) =37t2 80D581t4 F0o()ds - 16 523 t2 s2Fo(s) ds

/3t 3 5t 4F( ds
r[a3 (t), a4 (t)] = (\2D4 565) o Fo(s) ds,

with all others zero. Inspection of (18) then shows that the unknown functions must be
polynomials, viz.

Fo(t) = AO + COt2 + Et 4 1
[F,(t) A I 3 F3(t) l [A31 3[Gl(t)] =LB ]t+LD [ ' [G3(t)] =L ] t (23)
F2(t) A2t2+C2 4 rF4(t)l rA41

[F,(t)] =B2 t I D2] t '
IG4(t) =LB41t

with all others zero, in the current approximation. Substitution of (23) into the left hand
sides of equations (18) enables the coefficients to be determined in terms of the integrals
appearing in the forcing functions. The first equation suffices to show, with FD defined by
(21), that

2 FD = 3A o + Co + 3 Eo

D [4 1 41 25 ]i0d

= - [D 3D3 322D 332D3 s (s)ds

+ 3 1 s[2F,(s) - G(s)] ds - 89 s 4F (s) ds (24)
iTD 2 6417D s

and the third equation confirms that CO = O(D-3), Eo = O(D-5). Then substitution of (23)
gives
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1 1 1 21 s Fo(s) ds = A + C + 7 E = FD + O(D-3)

I sFo(s) ds = FD + O(D 3 ),

fo1 1
1 s[2Ft(s) - G(s)] ds = (2A - B) + 5 (2C, - D) .

But the second and last (n = 1) equations in (18) yield

A l + B =F + (D 4 ), A - B = + (- 4 ) -B
rD 3DrD

C1, D = O ( D 4),

and hence, without the need to consider further equations in (18) or determine other
coefficients, the above results suffice, on substitution in (24), to show that

FD = 1- 2 + +- 2 (25)rD 37D 3 41 2D4 144TrD 5 ( )

Note that the second Fourier mode contribution is O(D-
3) while that of the first mode is

O(D -4).
The velocity fields can, in principle, be determined by substitution of (23) in (12) and then

(5) but the calculation is lengthy, depending on the accuracy required, even on the axis p = 0
of the disk.

The uniform validity of the expansions in inverse powers of R, employed to obtain the
asymptotic estimate (25), requires that D exceed unity. The alternating signs indicate that
the mathematical error is less than the first term neglected. As D is decreased toward unity,
only the quasi-static approximation is threatened because, in contrast to the broadside
approach, no squeezing of the fluid between disk and plane can occur.

In the experimental work of Trahan and Hussey [1], disks of radii 0.5 or 1 cm and various
thicknesses down to 0.5 mm are used and thus lubrication effects are never eliminated. It is
not obvious how best to extrapolate the experimental values of the force coefficient to disks
of zero thickness in order to make a valid comparison with the analytical approximation
(25). Currently, the experiments yield a shortfall that increases from 0.020 at D- 1 = 0.4 to
0.035 at D 1 =0.8.
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